If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-50m=0
a = 2; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·2·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*2}=\frac{0}{4} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*2}=\frac{100}{4} =25 $
| -4+5v=6v-2v-10 | | x-0.333=0.400 | | 7^2+3x^2=20 | | 1=c+4-13 | | 16/48=x/12 | | 7-(5t-13)=25 | | 11=-2k | | 12^3+15n=0 | | 1=3^3a-2 | | 90=x+32+x | | -n+21=-3(5n+7) | | 2(4z−1)=3(z+2)24z13z2 | | -15=-3/8w | | 2m-10=-44 | | 3x-8(2x+3)=-6(2x | | 2x+3x-8=7 | | 5-4r=20 | | x^2+7x+10=(x-5)(x+2) | | 2x^2-24x=56 | | 8=10x/x+10 | | 2x-17=180 | | X+x/2+(x-15)=180 | | 2x-17=189 | | L^2+2l-166=0 | | 13m–19=12m | | x^2-7x+10=(x-5)(x+2) | | (x^2-8)^2-(x^2-8)(8x-x^2)=0 | | 1600x(1+(.02/4)^(4x1)=x | | 1.03^n=2 | | 8p-12=16 | | (√10x+100)+10=x | | 8(x-4)=14(×+2) |